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Exploiting Sparsity in Hyperspectral Image
Classification via Graphical Models

Umamahesh Srinivas, Student Member, IEEE, Yi Chen, Student Member, IEEE,
Vishal Monga, Senior Member, IEEE, Nasser M. Nasrabadi, Fellow, IEEE, and Trac D. Tran, Senior Member, IEEE

Abstract—A significant recent advance in hyperspectral image
(HSI) classification relies on the observation that the spectral
signature of a pixel can be represented by a sparse linear com-
bination of training spectra from an overcomplete dictionary. A
spatiospectral notion of sparsity is further captured by developing
a joint sparsity model, wherein spectral signatures of pixels in
a local spatial neighborhood (of the pixel of interest) are con-
strained to be represented by a common collection of training
spectra, albeit with different weights. A challenging open problem
is to effectively capture the class conditional correlations between
these multiple sparse representations corresponding to different
pixels in the spatial neighborhood. We propose a probabilistic
graphical model framework to explicitly mine the conditional
dependences between these distinct sparse features. Our graphical
models are synthesized using simple tree structures which can be
discriminatively learnt (even with limited training samples) for
classification. Experiments on benchmark HSI data sets reveal
significant improvements over existing approaches in classification
rates as well as robustness to choice of training.

Index Terms—Classification, hyperspectral imagery, joint spar-
sity model, probabilistic graphical models, sparse representation,
spatial correlation.

I. INTRODUCTION

HYPERSPECTRAL imaging sensors acquire digital im-
ages in hundreds of continuous narrow spectral bands

spanning the visible-to-infrared spectrum [1]. A pixel in hyper-
spectral images (HSIs) is typically a high-dimensional vector
of intensities as a function of wavelength. The high spectral
resolution of the HSI pixels facilitates superior discrimination
of object types.

In HSI classification, the class label of each pixel is de-
termined given a representative training set from each class.
The support vector machine (SVM) [2], which solves binary
classification problems by finding the optimal separating hy-
perplane between the two classes, has proved to be a powerful
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classifier for HSI classification tasks [3]. Variants such as SVM
with composite kernels, which incorporates spatial information
directly in the kernels [4], have led to improved performance.

Recent work has highlighted the relevance of incorporating
contextual information during HSI classification to improve
performance [4]–[7], particularly because HSI pixels in a local
neighborhood generally correspond to the same material and
have similar spectral characteristics. Many approaches have ex-
ploited this aspect, for example, by including postprocessing of
individually labeled samples [5], [6] and Markov random fields
in Bayesian approaches [7]. The composite kernel approach [4]
combines the spectral and spatial information from each HSI
pixel via kernel composition.

An important recent advance exploits sparsity for HSI clas-
sification [8], using the observation that spectral signatures of
the same material lie in a subspace of reduced dimensionality
compared to the number of spectral bands. An unknown pixel is
then expressed as a sparse linear combination of a few training
samples from a given dictionary, and the underlying sparse
representation vector encodes the class information. Further-
more, to exploit spatial correlation, a joint sparsity model is
employed in [8], wherein neighboring pixels are assumed to be
represented by linear combinations of a few common training
samples to enforce smoothness across these pixels.

The technique in [8] performs classification by using (spec-
tral) reconstruction error computed over the pixel neighbor-
hood. Recent work [9] in model-based compressed sensing
has shown the benefits of using probabilistic graphical mod-
els as priors on sparse coefficients for signal (e.g., image)
reconstruction problems. Inspired by this, we propose to use
probabilistic graphical models to enforce a class-specific struc-
ture on sparse coefficients, wherein our designed graphs rep-
resent class conditional densities. We claim that the distinct
sparse representations (corresponding to each pixel in a spatial
neighborhood) resulting from the joint sparsity model [8] offer
complementary yet correlated information for classification.
Our proposed framework then exploits these class conditional
correlations into building a powerful classifier. Specifically, a
pair of discriminative tree graphs [10] is first learnt for each
distinct set of features, i.e., the sparse representation vectors
of each pixel in the local spatial neighborhood of a central
pixel. These initially disjoint graphs are then thickened (by
introducing new edges) into a richer graphical structure via
boosting [10]–[12]. The training phase of our graphical model
learning uses sparse coefficients from all HSI classes, and
therefore, we learn a discriminative graph-based classifier that
captures interclass information which is ignored by the recon-
struction residual in [8]. Evaluation on benchmark HSI data
sets reveals that exploiting the structure on sparse coefficients

1545-598X/$31.00 © 2012 IEEE
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via class conditional graphs offers significant improvements in
classification rates. Crucially, our technique exhibits a more
graceful degradation with a decrease in the number of training
HSI pixels, over state-of-the-art alternatives.

II. BACKGROUND

A. Sparsity Model for Hyperspectral Classification

The HSI sparsity model is an extension of the sparse-
representation-based framework first introduced for face recog-
nition [13]. This model relies on the key observation that
the spectral signatures of pixels approximately lie in a low-
dimensional subspace spanned by representative training pixels
from the same class. Consequently, for a test pixel whose
class identity is unknown, there exists a sparse representation
in terms of training samples from all classes. Let y ∈ R

B be
a pixel with B indicating the number of spectral bands and
Dm ∈ R

B×Nm , m = 1, 2, . . . ,M , be the subdictionary whose
columns are the Nm training samples from the mth class. The
HSI pixel y can then be written as

y=D1α1+· · ·+DMαM = [D1 · · · DM ]︸ ︷︷ ︸
D

⎡
⎣ α1

...
αM

⎤
⎦

︸ ︷︷ ︸
α

=Dα

(1)

where D ∈ R
B×N with N =

∑M
m=1 Nm is a structured dic-

tionary consisting of training samples (referred to as atoms)
from all classes and α ∈ R

N is a sparse vector. Given the
overcomplete dictionary D, the sparse coefficient vector α is
obtained by solving the following optimization problem:

α̂ = argmin ‖α‖0 subject to ‖y −Dα‖2 ≤ ε (2)

where ε is a suitably chosen reconstruction error tolerance. The
sparse vector α̂ can be recovered efficiently using many norm
minimization techniques, including greedy algorithms or �1-
norm relaxation [14]. The class label of y is finally determined
by the minimal residual between y and its approximation from
each class subdictionary

Class(y) = arg min
m=1,...,M

‖y −Dmα̂m‖2 (3)

where α̂m is the collection of coefficients in α̂ corresponding
to the mth-class subdictionary.

B. Joint Sparsity Model

HSIs are usually smooth in the sense that pixels within a
small neighborhood usually represent the same material, and
thus, their spectral characteristics are highly correlated. In
order to incorporate this spatial correlation information, the
joint sparsity model [15] is employed for HSI classification
in [8] by assuming that the sparse vectors associated with
pixels in a local spatial neighborhood share a common sparsity
pattern. Specifically, let {yt}t=1,...,T be T pixels in a spatial
neighborhood centered at y1. These neighboring pixels can be
expressed as

Y = [y1 y2 · · · yT ] = [Dα1 Dα2 · · · DαT ]

=D [α1 α2 · · · αT ]︸ ︷︷ ︸
S

= DS. (4)

The sparse vectors {αt}t=1,...,T share the same support, i.e.,
they are linear combinations of the same collection of atoms
from D but with possibly different weights assigned to each
atom. As a result, S is a sparse matrix with only a few nonzero
rows. This row-sparse matrix S can be recovered by solving the
following constrained optimization problem:

Ŝ = argmin ‖Y −DS‖F subject to ‖S‖row,0 ≤ K0

(5)

where ‖S‖row,0 denotes the number of nonzero rows of S
and ‖ · ‖F is the Frobenius norm. The problem in (5) can be
approximately solved by the greedy simultaneous orthogonal
matching pursuit (SOMP) algorithm [15]. The identity of y1 is
then determined by the minimal total residual

Class(y1) = arg min
m=1,...,M

‖Y −DmŜm‖F (6)

where Ŝm contains the rows of Ŝ associated with Dm.

C. Probabilistic Graphical Models

A graph G = (V, E) is a collection of nodes V =

{v1, . . . , vr} and a set of (undirected) edges E ⊂
(V
2

)
. A prob-

abilistic graphical model describes the joint distribution of a
random vector with each node representing one (or a group
of) random variable(s) whose conditional dependences are indi-
cated by the presence of connecting edges. The graph structure
leads to a factorization of the joint probability distribution of the
random vector in terms of marginal and pairwise statistics. The
Hughes phenomenon [16] highlights the difficulty of learning
models for high-dimensional data with limited number of train-
ing samples. The use of probabilistic graphs reduces sensitivity
to choice of training, particularly in the low-training regime
[17, Ch. 8], [18].

Graphical models can be learnt either generatively or dis-
criminatively. In the generative setting, a single graph which
approximates a given distribution is learnt by minimizing the
approximation error. The seminal contribution in this area is
due to Chow and Liu [19], who obtained the optimal tree
approximation p̂ of a multivariate distribution p by minimizing
the Kullback–Leibler (KL) distance D(p‖p̂) = Ep[log(p/p̂)]
using first- and second-order statistics, via a maximum-weight
spanning tree (MWST) problem. In discriminative learning,
a pair of graphs is jointly learnt by minimizing the classi-
fication error. Recently, a discriminative learning framework
has been proposed [10] by maximizing the tree-approximate
J-divergence (a symmetric extension of the KL distance)

Ĵ(p̂, q̂; p, q) =

∫
(p(x)− q(x)) log

[
p̂(x)

q̂(x)

]
dx. (7)

Based on the observation that maximizing the J-divergence
minimizes the upper bound on the probability of classification
error, the discriminative learning problem then becomes

(p̂, q̂) = arg max
p̂,q̂ are trees

Ĵ(p̂, q̂; p̃, q̃) (8)

where p̃ and q̃ are the empirical estimates of p and q, respec-
tively. The problem in (8) is shown to decouple into two MWST
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problems [10]

p̂ = arg min
p̂ is a tree

D(p̃‖p̂)−D(q̃‖p̂)
q̂ = arg min

q̂ is a tree
D(q̃‖q̂)−D(p̃‖q̂). (9)

The optimal choice of p̂ (q̂) simultaneously minimizes its
distance to p̃ (q̃) and maximizes its distance from q̃ (p̃).

III. EXPLOITING JOINT SPARSITY VIA PROBABILISTIC

GRAPHICAL MODELS

Learning Thicker Graphical Models

The solution to (9) learns tree-structured graphs p̂ and q̂,
which, albeit learned optimally, can model only a small family
of distributions due to their simple edge structure. However,
optimally learning complex graphical models is, in general, NP-
hard [20]. This problem is practically addressed by boosting
simpler graphs [10]–[12] into richer structures. Recently, we
have proposed a feature fusion framework [21] for image clas-
sification where the “initial graphical structure” for boosting
is chosen as a forest of disjoint tree graphs. Thickening this
forest with new edges is hence tantamount to discovering new
conditional correlations between distinct feature sets.

Algorithm 1 LSGM (steps 1–4 offline)

1: Feature extraction (training): Compute sparse representations
αl, l = 1, . . . , T , for neighboring pixels of the training data.

2: Initial disjoint graphs:
Discriminatively learn T pairs of N -node tree graphs Gp

l and Gq
l on

{αl}, for l = 1, . . . , T , obtained from training data.
3: Separately concatenate nodes corresponding to the two classes,

to generate initial graphs.
4: Boosting on disjoint graphs: Iteratively thicken initial disjoint

graphs via boosting to obtain final graphs Gp and Gq .

{Online process}
5: Feature extraction (test): Obtain sparse representations αl, l =

1, . . . , T , in R
N from test image.

6: Inference: Classify based on the output of the resulting classifier
using (10).

We leverage the framework in [21] for HSI classification.
Here, the generation of distinct and complementary feature
sets is achieved by solving the joint sparse recovery problem
in (5) (with distinct feature sets being the sparse coefficient
vectors/columns of S). This is shown in Fig. 1, and the formal
description of our proposed local sparsity graphical model
(LSGM) algorithm is provided in Algorithm 1.

Note that the proposed LSGM algorithm consists of an
offline training stage (steps 1–4) and an online classification
stage (steps 5 and 6). The local sparsity in the name is in-
dicative of the joint sparsity model that is used to obtain
the local sparse features. The discriminative graphs are learnt
in the training stage. The process described here is for bi-
nary classification. The approach extends to multiclass prob-
lems by learning graphs in a one-against-all manner. For an
M -class classification problem, we learn M pairs of dis-
criminative graphs that represent the class conditional prob-
ability density functions f(α|Cm) and f(α|C̃m) for m =

1, 2, . . . ,M , where Cm denotes the mth class and C̃m denotes
the complement of Cm (i.e., C̃m =

⋃
k=1,...,M,k �=m Ck).

We first obtain the feature vectors (i.e., sparse vectors with
respect to a given training dictionary D) of training samples

Fig. 1. HSI classification using discriminative graphical models on sparse
feature representations obtained from local pixel neighborhoods.

and their neighboring pixels by solving the joint sparse recovery
problem in (5). Let T be the size of the neighborhood. The
extraction of sparse features may be viewed as a transformation
Tl : RB �→ R

N , and there are T such distinct transformations
Tl, l = 1, 2, . . . , T . For every pixel y ∈ R

B , T different fea-
tures αl ∈ R

N , l = 1, 2, . . . , T , are obtained, as shown in Fig. 1
for a 3 × 3 neighborhood with T = 9 (only three features are
displayed). For each type of feature, training features for class
Cm correspond to pixels in a neighborhood of training samples
known to belong to class Cm. Features for C̃m are the sparse
vectors associated with neighbors of representative training.

For each of the T transformations Tl, a pair of N -node
discriminative tree graphs Gp

l and Gq
l , which approximate the

class distributions f(αl|Cm) and f(αl|C̃m), respectively, is si-
multaneously learnt by solving the decoupled MWST problems
in (9). The initial disjoint graphs with TN nodes representing
the class distribution corresponding to Cm and C̃m are then
generated by separately concatenating the nodes of Gp

l , l =
1, . . . , T , and Gq

l , l = 1, . . . , T , respectively. These graphs with
sparse edge structure are then iteratively thickened via boosting
[21]. Different pairs of discriminative graphs over the same sets
of nodes with different weights are learnt in different iterations,
and the newly learnt edges are used to augment the graphs.
The final “thickened” graphs Gp and Gq are shown in Fig. 1
(right side).

The process described earlier (steps 1–4 in Algorithm 1) is
performed offline, and M pairs of discriminative graphs are
learnt for the M binary classification problems in a one-against-
all manner. The classification of a new test sample is then
performed online. Features α are extracted from the test sample
y by solving the sparse recovery problem in (5) for the T pixels
in the neighborhood centered at y. Let f̂(α|Cm) and f̂(α|C̃m)

denote the final graphs learnt for Cm and C̃m, respectively. The
class label of y is determined as follows:

Class(y) = arg max
m∈{1,...,M}

log

(
f̂(α|Cm)

f̂(α|C̃m)

)
. (10)

IV. EXPERIMENTS AND RESULTS

We compare our proposed LSGM approach with three com-
petitive methods: 1) spectral-feature-based SVM classifier [3],
[22]; 2) composite kernel SVM (SVM-CK) [4]; and 3) joint
sparsity model (SOMP) [8]. In SVM-CK, two types of kernels
are used: a spectral kernel Kω for the spectral (pixel) fea-
tures (in R

200) and a spatial kernel Ks for the spatial fea-
tures (in R

400) which are formed by the mean and standard
deviation of pixels in a neighborhood per spectral channel.
A polynomial kernel (order d = 7) is used for the spectral
features, while the radial basis function (RBF) kernel is used
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TABLE I
CLASSIFICATION RATES FOR THE AVIRIS INDIAN

PINES TEST SET. LSGMz-SCORE= −2.13

TABLE II
CLASSIFICATION RATES FOR THE UNIVERSITY OF

PAVIA TEST SET. LSGMz-SCORE= −2.01

Fig. 2. Difference maps for the AVIRIS Indian Pines data set, for the ground
truth map in (a). (b) SVM-CK [4]. (c) SOMP [8]. (d) Proposed LSGM
approach.

for the spatial features. The σ parameter for the RBF ker-
nel and the SVM regularization parameter C are selected by
cross-validation. The weighted summation kernel K = μKs +
(1− μ)Kω effectively captures spectral and contextual spatial
information, with the optimal choice μ = 0.4 determined by
cross-validation. A 5 × 5 window is used for the neighborhood
kernels. The parameters for SOMP are chosen as described in
[8]. The proposed LSGM approach uses a local window of
dimension 3 × 3. For fairness of comparison, results for SOMP
are also presented for the same window dimension.

We perform experiments using three distinct HSI data sets.
Note that two flavors of the results are reported: 1) Tables I–III
show the classification rates for carefully selected or good
training samples which amount to about 10% of available data
(typical of training choices in [4] and [8]), and 2) Fig. 3(a)–(f)
shows the performance plotted as a function of training set
size and also the results averaged from multiple (ten) random
training runs. Fig. 3(d)–(f) characterizes the distribution of
the classification rates (modeled as a random variable whose
value emerges as an outcome of a given run and fit to a
Gaussian distribution). Furthermore, we establish the statistical
significance of our results by computing LSGM z-scores for
each data set.

TABLE III
CLASSIFICATION RATES FOR THE CENTER OF

PAVIA TEST SET. LSGMz-SCORE= −2.17

A. AVIRIS Data Set: Indian Pines

The first HSI in our experiments is the Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) Indian Pines image
[23]. The AVIRIS sensor generates 220 bands across the spec-
tral range from 0.2 to 2.4 μm, of which only 200 bands are
considered by removing 20 water absorption bands [22]. This
image has a spatial resolution of 20 m per pixel and a spatial
dimension of 145 × 145. For well-chosen training samples,
the difference maps obtained using the different approaches are
shown in Fig. 2(b)–(d), and the classification rates for each
class, as well as the overall accuracy, are shown in Table I.
The improvement over SOMP indicates the benefits of using
a discriminative classifier instead of reconstruction residuals
for class assignment while still retaining the advantages of
exploiting spatiospectral information.

Fig. 3(a) shows a comparison of algorithm performances as a
function of training set size. Our LSGM approach outperforms
the competing approaches, and the difference is particularly
significant in the low-training regime. As expected, the overall
classification accuracy decreases when the number of training
samples is reduced. With that said, LSGM offers a more grace-
ful degradation in comparison to other approaches. In Fig. 3(d),
the average classification rate is the highest for LSGM, which
is consistent with the results in Fig. 3(a). Furthermore, the
variance is the lowest for LSGM, underlining its improved
robustness against particular choice of training samples.

B. ROSIS Urban Data Over Pavia, Italy

The next two HSIs, University of Pavia and Center of Pavia,
are urban images acquired by the Reflective Optics System
Imaging Spectrometer (ROSIS). The ROSIS sensor generates
115 spectral bands ranging from 0.43 to 0.86 m and has a spatial
resolution of 1.3 m per pixel. The University of Pavia image
consists of 610 × 340 pixels, each having 103 bands with the
12 noisiest bands removed. The Center of Pavia image consists
of 1096 × 492 pixels, each having 102 spectral bands after 13
noisy bands are removed. For these two images, we repeat the
experimental scenarios tested in Section IV-A.

The classification rates for the two ROSIS images are pro-
vided in Tables II and III, respectively, for the scenario of well-
chosen training samples. In Table II, the SVM-CK technique
performs marginally better than LSGM in the sense of overall
classification accuracy. However, for most individual classes,
LSGM does better, particularly in cases where the training
sample size is smaller. In Table III, LSGM performs better
than SOMP as well as SVM-CK. From Fig. 3(b) and (c), we
observe that LSGM improves upon the performance of SOMP
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Fig. 3. Performance of different approaches as a function of the number of training samples provided. (a) AVIRIS image. (b) University of Pavia image.
(c) Center of Pavia image. (d)–(f) Density function of the classification rates obtained for ten different random realizations of training.

and SVM-CK by about 4%, while the improvements over the
baseline SVM classifier are even more pronounced.

The z-score for LSGM on the AVIRIS image is −2.13, which
indicates that, with a high probability (= 0.983), any random
selection of training samples will give results similar to the
values in Table I. For the University of Pavia and Center of
Pavia images, the z-scores are −2.01 and −2.17, respectively.
The negative sign merely indicates that the experimental value
is lesser than the most likely value (Gaussian mean).

V. CONCLUSION

Linear reconstruction models that impose sparsity are gain-
ing increasing popularity in HSI classification. A spatiospectral
notion of sparsity is exploited in the current work by posing
a structure on sparse coefficients via discriminative graphi-
cal models. Results show marked improvement over powerful
state-of-the-art classifiers, particularly in the form of robustness
to choice and number of training hyperspectral profiles.
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